A Note on Functional a Posteriori Estimates for Elliptic Optimal Control Problems

نویسندگان

  • M. Wolfmayr
  • M. WOLFMAYR
چکیده

In this work, new theoretical results on functional type a posteriori estimates for elliptic optimal control problems with control constraints are presented. More precisely, we derive new, sharp, guaranteed and fully computable lower bounds for the cost functional in addition to the already existing upper bounds. Using both, the lower and the upper bounds, we arrive at two-sided estimates for the cost functional. We prove that these bounds finally lead to sharp, guaranteed and fully computable upper estimates for the discretization error in the state and the control of the optimal control problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

A Posteriori Error Estimates for Semilinear Boundary Control Problems

In this paper we study the finite element approximation for boundary control problems governed by semilinear elliptic equations. Optimal control problems are very important model in science and engineering numerical simulation. They have various physical backgrounds in many practical applications. Finite element approximation of optimal control problems plays a very important role in the numeri...

متن کامل

Residual-based a posteriori error estimates for hp finite element solutions of semilinear Neumann boundary optimal control problems

In this paper, we investigate residual-based a posteriori error estimates for the hp finite element approximation of semilinear Neumann boundary elliptic optimal control problems. By using the hp finite element approximation for both the state and the co-state and the hp discontinuous Galerkin finite element approximation for the control, we derive a posteriori error bounds in L2-H1 norms for t...

متن کامل

A RESIDUAL–BASED POSTERIORI ERROR ESTIMATES FOR hp FINITE ELEMENT SOLUTIONS OF GENERAL BILINEAR OPTIMAL CONTROL PROBLEMS

In this paper, we investigate a residual-based posteriori error estimates for the hp finite element approximation of general optimal control problems governed by bilinear elliptic equations. By using the hp discontinuous Galerkin finite element approximation for the control and the hp finite element approximation for both the state and the co-state, we derive a posteriori upper error bounds for...

متن کامل

A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints

In this paper optimal control problems governed by elliptic semilinear equations and subject to pointwise state constraints are considered. These problems are discretized using finite element methods and a posteriori error estimates are derived assessing the error with respect to the cost functional. These estimates are used to obtain quantitative information on the discretization error as well...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015